首页> 外文会议>Enabling Technologies for Simulation Science Ⅵ >Developing Improved Metamodels by Combining Phenomenological Reasoning with Statistical Methods
【24h】

Developing Improved Metamodels by Combining Phenomenological Reasoning with Statistical Methods

机译:通过将现象学推理与统计方法相结合来开发改进的元模型

获取原文
获取原文并翻译 | 示例

摘要

A metamodel is relatively small, simple model that approximates the "behavior" of a large, complex model. A common and superficially attractive way to develop a metamodel is to generate "data" from a number of large-model runs and to then use off-the-shelf statistical methods without attempting to understand the model's internal workings. This paper describes research illuminating why it is important and fruitful, in some problems, to improve the quality of such metamodels by using various types of phenomenological knowledge. The benefits are sometimes mathematically subtle, but strategically important, as when one is dealing with a system that could fail if any of several critical components fail. Naieve metamodels may fail to reflect the individual criticality of such components and may therefore be quite misleading if used for policy analysis. Naive metamodeling may also give very misleading results on the relative importance of inputs, thereby skewing resource-allocation decisions. By inserting an appropriate dose of theory, however, such problems can be greatly mitigated. Our work is intended to be a contribution to the emerging understanding of multiresolution, multiperspective modeling (MRMPM), as well as a contribution to interdisciplinary work combining virtues of statistical methodology with virtues of more theory-based work. Although the analysis we present is based on a particular experiment with a particular "large and complex model," we believe that the insights are more general.
机译:元模型是相对较小的简单模型,它近似于大型复杂模型的“行为”。开发元模型的一种常见的,表面上吸引人的方法是从大量大型模型运行中生成“数据”,然后使用现有的统计方法,而无需尝试了解模型的内部工作原理。本文介绍了一些研究,阐明了为什么通过使用各种类型的现象学知识来提高此类元模型的质量在某些问题上为何重要且富有成果。好处有时在数学上是微妙的,但在战略上很重要,因为当一个系统正在处理如果几个关键组件中的任何一个发生故障时可能会发生故障的系统时,其收益就非常重要。朴素的元模型可能无法反映此类组件的个别重要性,因此如果用于策略分析,则可能会产生误导。天真的元模型也可能在输入的相对重要性方面给出非常令人误解的结果,从而歪曲资源分配决策。但是,通过插入适当的理论剂量,可以大大缓解此类问题。我们的工作旨在为对多分辨率,多视角建模(MRMPM)的新兴理解做出贡献,并为将统计方法论的优点与更多基于理论的工作相结合的跨学科工作做出贡献。尽管我们目前的分析是基于具有特定“大型和复杂模型”的特定实验,但我们认为这些见解更为笼统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号