首页> 外文期刊>Mathematical Problems in Engineering >An Efficient Reliability Analysis Method Combining Improved EIF Active Learning Mechanism and Kriging Metamodel
【24h】

An Efficient Reliability Analysis Method Combining Improved EIF Active Learning Mechanism and Kriging Metamodel

机译:结合改进的EIF主动学习机制和Kriging元模型的高效可靠性分析方法

获取原文
获取原文并翻译 | 示例

摘要

Complex implicit performance functions widely exist in many engineering problems. The reliability analysis of these problems has always been a challenge. Using surrogate model instead of real performance function is one of the methods to solve this kind of problem. Kriging is one of the surrogate models with precise interpolation technique. In order to make the kriging model achieve higher accuracy using a small number of samples, i.e., improve its practicability and feasibility in practical engineering problems, some active learning equations are wildly studied. Expected improvement function (EIF) is one of them. However, the EIF has a great disadvantage in selecting the added sample point. Therefore, a joint active learning mechanism, J-EIF, is proposed to obtain the ideal added point. The J-EIF active learning mechanism combines the two active learning mechanisms and makes full use of the characters of kriging model. It overcomes the shortcoming of EIF active learning mechanism in the selection of added sample points. Then, using Monte Carlo Simulation (MCS) results as a reference, the reliability of two examples is estimated. The results are discussed showing that the learning efficiency and accuracy of the improved EIF are both higher than those of the traditional EIF.
机译:复杂的隐式性能函数广泛存在于许多工程问题中。这些问题的可靠性分析一直是一个挑战。使用代理模型代替实际性能函数是解决此类问题的方法之一。克里格(Kriging)是采用精确插值技术的替代模型之一。为了使用少量样本使克里金模型达到更高的精度,即提高其在实际工程问题中的实用性和可行性,人们对一些主动学习方程进行了广泛研究。预期改进功能(EIF)是其中之一。但是,EIF在选择添加的采样点方面有很大的缺点。因此,提出了一种联合主动学习机制J-EIF,以获得理想的加分点。 J-EIF主动学习机制结合了两种主动学习机制,并充分利用了克里格模型的特点。它克服了EIF主动学习机制在选择附加采样点时的缺点。然后,以蒙特卡罗模拟(MCS)结果为参考,评估了两个示例的可靠性。讨论结果表明,改进后的EIF的学习效率和准确性均高于传统EIF。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第10期|5672171.1-5672171.9|共9页
  • 作者单位

    Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Dept Elect Engn, Sch Automat, Xian 710129, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号