首页> 外文会议>Emerging trends in computing, informatics, systems sciences, and engineering. >Estimation of Depth Map Using Image Focus: A Scale-Space Approach for Shape Recovery
【24h】

Estimation of Depth Map Using Image Focus: A Scale-Space Approach for Shape Recovery

机译:使用图像聚焦的深度图估计:一种用于形状恢复的比例空间方法

获取原文
获取原文并翻译 | 示例

摘要

Laplacian-based derivatives used as a local focus measure to recover range information from an image stack have the undesirable effect of noise amplification, requiring good signal-to-noise ratios (SNRs) to work well. Such a requirement is challenged in practice by the relatively low SNRs achieved under classical phase contrast microscopy and the typically complex morphological structures of (unstained) live cells. This paper presents the results of our recent work on a new, multiscale approach to accurately estimate the focal depth of a monolayer cell culture populated with a moderately large number of live cells, whose boundaries were highly variable both in terms of size and shape. The algorithm was constructed in classical scale-space formalism which is characterised by an adaptive smoothing capability that offers optimal noise filtration/sensitivity and good localisation accuracy. Moreover, it provides a computationally scalable algorithm which not only obviates the need for additional heuristic procedures of global thresholding and (subsequent) interpolation of focus-measure values, but also generates as an integral part of the algorithm, a final range image/map that is demonstrably more realistic and, perceptually, more accurate.
机译:基于拉普拉斯算子的导数用作从图像堆栈中恢复距离信息的局部聚焦度量,具有不希望的噪声放大效果,需要良好的信噪比(SNR)才能正常工作。在实践中,这样的要求受到了经典相衬显微镜下相对较低的SNR和(未染色的)活细胞典型的复杂形态结构的挑战。本文介绍了我们最近在一种新的,多尺度方法上的工作结果,该方法可以准确地估计由中等数量的活细胞组成的单层细胞培养的焦点深度,活细胞的边界在大小和形状上都高度可变。该算法以经典的尺度空间形式主义构建,其特征在于自适应平滑功能,可提供最佳的噪声过滤/灵敏度和良好的定位精度。此外,它提供了一种计算上可扩展的算法,该算法不仅消除了对全局阈值化和对焦点测量值进行(随后)内插的其他启发式过程的需要,而且还生成了最终的范围图像/地图作为算法的组成部分,显然更现实,并且在感知上更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号