首页> 外文会议>Electrical and Computer Engineering, 2009. CCECE '09 >Classification of english phrases and SMS text messages using Bayes and Support Vector Machine classifiers
【24h】

Classification of english phrases and SMS text messages using Bayes and Support Vector Machine classifiers

机译:使用贝叶斯和支持向量机分类器对英语短语和SMS短信进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper performs a comparative analysis of several different types of SMS text classifiers: weight enhanced Multinomial naive Bayes, Poisson naive Bayes, and L2-loss Support Vector Machine. The effects of preprocessing and incorporating additional features on the classifiers were examined. The preliminary experimental results show that the use of preprocessing and incorporating additional features produced no significant gain or loss in classification efficiency. However the feature space used by the classification methods decreased, which could be beneficial for resource limited environments. In addition the solutions to the SMS text classification may be applied to other problems, like the classification of English sentences. Our collection of text messages may not be statistically significant, because of very limited sources for text messages.
机译:本文对几种不同类型的SMS文本分类器进行了比较分析:权重增强的多项式朴素贝叶斯,泊松朴素贝叶斯和L2损失支持向量机。检查了预处理的影响以及在分类器上合并其他功能的影响。初步的实验结果表明,使用预处理和合并其他功能不会对分类效率产生明显的影响。但是,分类方法使用的特征空间减少了,这对于资源有限的环境可能是有益的。另外,SMS文本分类的解决方案可以应用于其他问题,例如英语句子的分类。由于文本消息的来源非常有限,因此我们收集的文本消息可能在统计上并不重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号