首页> 外文会议>第八届国际测试技术研讨会(8th International Symposium on Test and Measurement)论文集 >Intelligent Learning Algorithm for Depth Detection Applied to a Humanoid Vision System
【24h】

Intelligent Learning Algorithm for Depth Detection Applied to a Humanoid Vision System

机译:应用于人形视觉系统的深度检测智能学习算法

获取原文

摘要

We can utilize stereo-pair images obtained from two cameras to compute world coordinate points by using the principle of triangulation. However, there are some restrictions from cameras and some initial parameters need to be obtained in the experiment, by applying this method to get world coordinates. In this paper, a type of depth detection training system is proposed that artificial neural networks be used to train the system such that the need for the initial parameters of cameras are eliminated. The training set for my neural network consists of a variety of target points in stereo-pair and the corresponding world coordinates of points. Through the error analysis, we can know the neural network depth detection system' accuracy is far greater than the traditional depth detection method, and the method is enough accurate that can be widely used in stereo vision system.
机译:我们可以利用三角测量原理,利用从两台摄像机获得的立体对图像来计算世界坐标点。但是,通过应用此方法获取世界坐标,相机存在一些限制,并且需要在实验中获得一些初始参数。在本文中,提出了一种深度检测训练系统,该系统使用人工神经网络来训练系统,从而消除了对摄像机初始参数的需求。我的神经网络的训练集由立体对中的各种目标点和相应的点世界坐标组成。通过误差分析,我们可以知道神经网络深度检测系统的精度远远高于传统的深度检测方法,该方法具有足够的精度,可以在立体视觉系统中得到广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号