首页> 外文会议>Document recognition and retrieval XVII >Naive Bayes and SVM classifiers for classifying Databank Accession Number sentences from online biomedical articles
【24h】

Naive Bayes and SVM classifiers for classifying Databank Accession Number sentences from online biomedical articles

机译:朴素贝叶斯和SVM分类器用于对在线生物医学文章中的数据库登录号句子进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper describes two classifiers, Naive Bayes and Support Vector Machine (SVM), to classify sentences containing Databank Accession Numbers, a key piece of bibliographic information, from online biomedical articles. The correct identification of these sentences is necessary for the subsequent extraction of these numbers. The classifiers use words that occur most frequently in sentences as features for the classification. Twelve sets of word features are collected to train and test the classifiers. Each set has a different number of word features ranging from 100 to 1,200. The performance of each classifier is evaluated using four measures: Precision, Recall, F-Measure, and Accuracy. The Naive Bayes classifier shows performance above 93.91% at 200 word features for all four measures. The SVM shows 98.80% Precision at 200 word features, 94.90% Recall at 500 and 700, 96.46% F-Measure at 200, and 99.14% Accuracy at 200 and 400. To improve classification performance, we propose two merging operators, Max and Harmonic Mean, to combine results of the two classifiers. The final results show a measureable improvement in Recall, F-Measure, and Accuracy rates.
机译:本文介绍了两个分类器,即朴素贝叶斯和支持向量机(SVM),用于从在线生物医学文章中对包含数据库登录号(这是书目信息的关键部分)的句子进行分类。这些句子的正确识别对于随后提取这些数字是必要的。分类器使用句子中最频繁出现的单词作为分类的特征。收集十二套单词特征以训练和测试分类器。每个集合的单词特征数量从100到1200不等。每个分类器的性能使用以下四个度量进行评估:精度,召回率,F度量和准确性。朴素贝叶斯分类器在所有四个词的200个单词特征下均显示出93.91%以上的性能。 SVM在200个单词特征上显示98.80%的精度,在500和700下具有94.90%的召回率,在200和400下具有96.46%的F量度,以及在200和400下的准确度为99.14%。为提高分类性能,我们建议使用两种合并运算符,即Max和Harmonic意思是,要结合两个分类器的结果。最终结果显示召回率,F度量和准确率的可衡量的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号