首页> 外文会议>Detection and sensing of mines, explosive objects, and obscured targets XVI >Live-site UXO classification studies using advanced EMI and statistical models
【24h】

Live-site UXO classification studies using advanced EMI and statistical models

机译:使用高级EMI和统计模型的现场UXO分类研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present the inversion and classification performance of the advanced EMI inversion, processing and discrimination schemes developed by our group when applied to the ESTCP Live-Site UXO Discrimination Study carried out at the former Camp Butner in North Carolina. The advanced models combine: 1) the joint diagonalization (JD) algorithm to estimate the number of potential anomalies from the measured data without inversion, 2) the ortho-normalized volume magnetic source (ONVMS) to represent targets' EMI responses and extract their intrinsic "feature vectors," and 3) the Gaussian mixture algorithm to classify buried objects as targets of interest or not starting from the extracted discrimination features. The studies are conducted using cued datasets collected with the next-generation TEMTADS and MetalMapper (MM) sensor systems. For the cued TEMTADS datasets we first estimate the data quality and the number of targets contributing to each signal using the JD technique. Once we know the number of targets we proceed to invert the data using a standard non-linear optimization technique in order to determine intrinsic parameters such as the total ONVMS for each potential target. Finally we classify the targets using a library-matching technique. The MetalMapper data are all inverted as multi-target scenarios, and the resulting intrinsic parameters are grouped using an unsupervised Gaussian mixture approach. The potential targets of interest are a 37-mm projectile, an M48 fuze, and a 105-mm projectile. During the analysis we requested the ground truth for a few selected anomalies to assist in the classification task. Our results were scored independently by the Institute for Defense Analyses, who revealed that our advanced models produce superb classification when starting from either TEMTADS or MM cued datasets
机译:在本文中,我们将介绍由我们小组开发的高级EMI反转,处理和识别方案的反转和分类性能,该方案适用于在北卡罗来纳州前坎特纳(Camp Butner)进行的ESTCP Live-site UXO歧视研究。先进的模型结合了以下内容:1)联合对角化(JD)算法,可从测量数据中估计潜在异常的数量而无需反演; 2)正交归一化的体积磁源(ONVMS),可表示目标的EMI响应并提取其固有特性“特征向量”,以及3)高斯混合算法,可从提取出的辨别特征开始,将掩埋物体分类为感兴趣的目标或不是目标。这些研究是使用由下一代TEMTADS和MetalMapper(MM)传感器系统收集的提示数据集进行的。对于提示的TEMTADS数据集,我们首先使用JD技术估算数据质量和贡献给每个信号的目标数量。一旦知道了目标数量,我们便会使用标准的非线性优化技术对数据进行求逆,以确定内在参数,例如每个潜在目标的总ONVMS。最后,我们使用库匹配技术对目标进行分类。 MetalMapper数据都被反转为多目标方案,并且使用无监督的高斯混合方法对所得的固有参数进行分组。潜在的目标目标是37毫米弹丸,M48引信和105毫米弹丸。在分析过程中,我们请求了一些选定异常的地面真相,以协助进行分类任务。国防分析研究所对我们的结果进行了独立评分,该研究所透露,从TEMTADS或MM线索数据集开始,我们的高级模型都可以提供出色的分类

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号