首页> 外文会议>Detection and sensing of mines, explosive objects, and obscured targets XV >Feature Extraction and Object Recognition in Multi-Modal Forward Looking Imagery
【24h】

Feature Extraction and Object Recognition in Multi-Modal Forward Looking Imagery

机译:多模态前瞻图像中的特征提取与目标识别

获取原文
获取原文并翻译 | 示例

摘要

The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) recently tested an explosive-hazards detection vehicle that combines a pulsed FLGPR with a visible-spectrum color camera. Additionally, NVESD tested a human-in-the-loop multi-camera system with the same goal in mind. It contains wide field-of-view color and infrared cameras as well as zoomable narrow field-of-view versions of those modalities. Even though they are separate vehicles, having information from both systems offers great potential for information fusion. Based on previous work at the University of Missouri, we are not only able to register the UTM-based positions of the FLGPR to the color image sequences on the first system, but we can register these locations to corresponding image frames of all sensors on the human-in-the-loop platform. This paper presents our approach to first generate libraries of multi-sensor information across these platforms. Subsequently, research is performed in feature extraction and recognition algorithms based on the multi-sensor signatures. Our goal is to tailor specific algorithms to recognize and eliminate different categories of clutter and to be able to identify particular explosive hazards. We demonstrate our library creation, feature extraction and object recognition results on a large data collection at a US Army test site.
机译:美国陆军夜视和电子传感器局(NVESD)最近测试了一种爆炸危险检测工具,该工具将脉冲FLGPR与可见光谱彩色摄像头结合使用。此外,NVESD测试了具有相同目标的人在环多摄像头系统。它包含宽视野的彩色和红外热像仪,以及这些模式的可缩放的窄视野版本。即使它们是分开的车辆,从两个系统获取信息也为信息融合提供了巨大的潜力。根据密苏里大学的先前工作,我们不仅能够将基于UTM的FLGPR位置注册到第一个系统上的彩色图像序列,而且可以将这些位置注册到所有传感器上的相应图像帧。人在环平台。本文介绍了我们首先在这些平台上生成多传感器信息库的方法。随后,对基于多传感器签名的特征提取和识别算法进行了研究。我们的目标是定制特定的算法,以识别和消除不同类别的杂波,并能够识别特定的爆炸危险。我们在美国陆军测试站点的大量数据中展示了我们的库创建,特征提取和对象识别结果。

著录项

  • 来源
  • 会议地点 Orlando FL(US)
  • 作者单位

    Dept. of Electrical and Computer Engineering, Portland State University, Portland, OR 97201;

    rnDept. of Electrical and Computer Engineering, Portland State University, Portland, OR 97201;

    rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211;

    rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211;

    rnDept. of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211;

    rnU. S. Army RDECOM CERDEC, Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA 22060;

    rnU. S. Army RDECOM CERDEC, Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA 22060;

    rnDept. of Electrical Engineering, State University of New York at Buffalo, Amherst, NY 14260;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP212;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号