首页> 外文会议>Design, Automation Test in Europe Conference Exhibition >Reverse engineering of irreducible polynomials in GF(2m) arithmetic
【24h】

Reverse engineering of irreducible polynomials in GF(2m) arithmetic

机译:GF(2m)算法中不可约多项式的逆向工程

获取原文

摘要

Current techniques for formally verifying circuits implemented in Galois field (GF) arithmetic are limited to those with a known irreducible polynomial P(x). This paper presents a computer algebra based technique that extracts the irreducible polynomial P(x) used in the implementation of a multiplier in GF(2m). The method is based on first extracting a unique polynomial in Galois field of each output bit independently. P(x) is then obtained by analyzing the algebraic expression in GF(2m) of each output bit. We demonstrate that this method is able to reverse engineer the irreducible polynomial of an n-bit GF multiplier in n threads. Experiments were performed on Mastrovito and Montgomery multipliers with different P(x), including NIST-recommended polynomials and optimal polynomials for different microprocessor architectures.
机译:当前用于形式验证伽罗华域(GF)算法的电路的技术仅限于具有已知不可约多项式P(x)的技术。本文提出了一种基于计算机代数的技术,该技术提取了在GF(2m)中实现乘法器所使用的不可约多项式P(x)。该方法基于首先独立地提取每个输出位的Galois字段中的唯一多项式。然后,通过分析每个输出位的GF(2m)中的代数表达式来获得P(x)。我们证明了该方法能够对n个线程中n位GF乘法器的不可约多项式进行逆向工程。在具有不同P(x)的Mastrovito和Montgomery乘数上进行了实验,包括NIST推荐的多项式和针对不同微处理器体系结构的最佳多项式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号