首页> 外文会议>Decision making and soft computing >AN EFFICIENT ONLINE LEARNING APPROACH FOR SUPPORT VECTOR REGRESSION
【24h】

AN EFFICIENT ONLINE LEARNING APPROACH FOR SUPPORT VECTOR REGRESSION

机译:支持向量回归的有效在线学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient online learning approach is proposed for Support Vector Regression (SVR) by combining Feature Vector Selection (FVS) and incremental learning. FVS is used to reduce the size of the training data set and serves as model update criterion. Incremental learning can "adiabatically" add a new Feature Vector (FV) in the model, while retaining the Kuhn-Tucker conditions. The proposed approach can be applied for both online training & learning and offline training & online learning. The results on a real case study concerning data for anomaly prediction in a component of a power generation system show the satisfactory performance and efficiency of this learning paradigm.
机译:本文提出了一种有效的在线学习方法,该方法将特征向量选择(FVS)与增量学习相结合,用于支持向量回归(SVR)。 FVS用于减少训练数据集的大小,并用作模型更新标准。增量学习可以“绝热地”在模型中添加新的特征向量(FV),同时保留Kuhn-Tucker条件。所提出的方法可以应用于在线培训和学习以及离线培训和在线学习。涉及发电系统组件中异常预测数据的实际案例研究的结果表明,该学习范例具有令人满意的性能和效率。

著录项

  • 来源
  • 会议地点 Joao Pessoa(BR)
  • 作者单位

    Systems Science and the Energetic Challenge, European Foundation for New Energy - Electricite de France, CentraleSupelec, France;

    Department of Biostatistics, University of Oslo, Norway;

    EDF RD, Simulation and information TEchnologies for Power generation System (STEPS) Department, 6 quai Waiter, F-78401, Chatou, France;

    Energy Department, Politecnico di Milano. Systems Science and the Energetic challenge, European Foundation for New Energy - Electricite de France, CentraleSupelec, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号