首页> 外文会议>Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2006 >A Novel Unsupervised Anomaly Detection Based On Robust Principal Component Classifier
【24h】

A Novel Unsupervised Anomaly Detection Based On Robust Principal Component Classifier

机译:基于鲁棒主成分分类器的新型无监督异常检测

获取原文
获取原文并翻译 | 示例

摘要

Intrusion Detection Systems (IDSs) need a mass of labeled data in the process of training, which hampers the application and popularity of traditional IDSs. Classical principal component analysis is highly sensitive to outliers in training data, and leads to poor classification accuracy. This paper proposes a novel scheme based on robust principal component classifier, which obtains principal components that are not influenced much by outliers. An anomaly detection model is constructed from the distances in the principal component space and the reconstruction error of training data. The experiments show that this proposed approach can detect unknown intrusions effectively, and has a good performance in detection rate and false positive rate especially.
机译:入侵检测系统(IDS)在训练过程中需要大量带标签的数据,这妨碍了传统IDS的应用和普及。经典的主成分分析对训练数据中的异常值非常敏感,并导致分类精度较差。本文提出了一种基于鲁棒主成分分类器的新方案,该方案获得不受异常值影响较大的主成分。从主成分空间中的距离和训练数据的重构误差构造异常检测模型。实验表明,该方法可以有效地检测未知入侵,并且在检测率和误报率方面具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号