首页> 外文会议>Data Mining and Big Data >Link Prediction by Utilizing Correlations Between Link Types and Path Types in Heterogeneous Information Networks
【24h】

Link Prediction by Utilizing Correlations Between Link Types and Path Types in Heterogeneous Information Networks

机译:利用异构信息网络中链路类型和路径类型之间的相关性进行链路预测

获取原文
获取原文并翻译 | 示例

摘要

Link prediction is a key technique in various applications such as prediction of existence of relationship in biological network. Most existing works focus the link prediction on homogeneous information networks. However, most applications in the real world require heterogeneous information networks that are multiple types of nodes and links. The heterogeneous information network has complex correlation between a type of link and a type of path, which is an important clue for link prediction. In this paper, we propose a method of link prediction in the heterogeneous information network that takes a type correlation into account. We introduce the Local Relatedness Measure (LRM) that indicates possibility of existence of a link between different types of nodes. The correlation between a link type and path type, called TypeCorr is formulated to quantitatively capture the correlation between them. We perform the link prediction based on a supervised learning method, by using features obtained by combining TypeCorr together with other relevant properties. Our experiments show that the proposed method improves accuracy of the link prediction on a real world network.
机译:链路预测是各种应用中的关键技术,例如预测生物网络中关系的存在。现有的大多数工作都将链接预测集中在同类信息网络上。但是,现实世界中的大多数应用程序都需要异构信息网络,该网络是多种类型的节点和链接。异构信息网络在链路类型和路径类型之间具有复杂的相关性,这是进行链路预测的重要线索。在本文中,我们提出了一种在异构信息网络中考虑类型相关性的链接预测方法。我们引入了局部相关性度量(LRM),该度量指示不同类型的节点之间存在链接的可能性。建立链接类型和路径类型之间的相关性(称为TypeCorr),以定量地捕获它们之间的相关性。我们使用通过将TypeCorr与其他相关属性组合在一起而获得的功能,基于监督学习方法执行链接预测。我们的实验表明,该方法提高了真实世界网络上链接预测的准确性。

著录项

  • 来源
    《Data Mining and Big Data》|2016年|156-164|共9页
  • 会议地点 Bali(ID)
  • 作者单位

    Korea Advanced Institue of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Daejon 305-701, South Korea;

    Korea Advanced Institue of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Daejon 305-701, South Korea;

    Korea Advanced Institue of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Daejon 305-701, South Korea;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heterogeneous information network; Link prediction; Supervised learning;

    机译:异构信息网络;链接预测;监督学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号