首页> 外文会议>Data Analysis and Modeling for Process Control II >Wafer Sampling by Regression for Systematic Wafer Variation Detection
【24h】

Wafer Sampling by Regression for Systematic Wafer Variation Detection

机译:通过回归进行晶圆采样以进行系统晶圆变化检测

获取原文
获取原文并翻译 | 示例

摘要

In-line measurements are used to monitor semiconductor manufacturing processes for excessive variation using statistical process control (SPC) chart techniques. Systematic spatial wafer variation often occurs in a recognizable pattern across the wafer that is characteristic of a particular manufacturing step. Visualization tools are used to associate these patterns with specific manufacturing steps preceding the measurement. Acquiring the measurements is an expensive and slow process. The number of sites measured on a wafer must be minimized while still providing sufficient data to monitor the process. We address two key challenges to effective wafer-level monitoring. The first challenge is to select a small sample of inspection sites that maximize detection sensitivity to the patterns of interest, while minimizing the confounding effects of other types of wafer variation. The second challenge is to develop a detection algorithm that maximizes sensitivity to the patterns of interest without exceeding a user-specified false positive rate. We propose new sampling and detection methods. Both methods are based on a linear regression model with distinct and orthogonal components. The model is flexible enough to include many types of systematic spatial variation across the wafer. Because the components are orthogonal, the degree of each type of variation can be estimated and detected independently with very few samples. A formal hypothesis test can then be used to determine whether specific patterns are present. This approach enables one to determine the sensitivity of a sample plan to patterns of interest and the minimum number of measurements necessary to adequately monitor the process.
机译:在线测量用于通过统计过程控制(SPC)图表技术监视半导体制造过程中是否存在过度变化。系统性空间晶片变化通常以可识别的图案在整个晶片上发生,这是特定制造步骤的特征。可视化工具用于将这些模式与测量之前的特定制造步骤相关联。进行测量是一个昂贵且缓慢的过程。必须最小化在晶圆上测量的位置数量,同时仍要提供足够的数据来监视过程。我们应对有效晶圆级监控的两个关键挑战。第一个挑战是选择一个小的检查点样本,以最大程度地提高对目标图案的检测灵敏度,同时最大程度地减少其他类型晶圆变化的混杂影响。第二个挑战是开发一种检测算法,该算法在不超出用户指定的误报率的情况下最大程度地提高对目标模式的敏感性。我们提出了新的采样和检测方法。两种方法都基于具有不同和正交分量的线性回归模型。该模型具有足够的灵活性,可以包括跨晶圆的多种类型的系统空间变化。由于分量是正交的,因此可以用很少的样本独立地估计和检测每种类型的变化程度。然后可以使用正式的假设检验来确定是否存在特定模式。这种方法使人们能够确定样本计划对目标模式的敏感性以及充分监控过程所需的最少测量数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号