首页> 外文会议>Cooperative Information Agents X; Lecture Notes in Artificial Intelligence; 4149 >A Distributed Agent Implementation of Multiple Species Flocking Model for Document Partitioning Clustering
【24h】

A Distributed Agent Implementation of Multiple Species Flocking Model for Document Partitioning Clustering

机译:用于文档分区聚类的多种群聚模型的分布式Agent实现

获取原文
获取原文并翻译 | 示例

摘要

The Flocking model, first proposed by Craig Reynolds, is one of the first bio-inspired computational collective behavior models that has many popular applications, such as animation. Our early research has resulted in a flock clustering algorithm that can achieve better performance than the K-means or the Ant clustering algorithms for data clustering. This algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for efficient clustering result retrieval and visualization. In this paper, we propose a bio-inspired clustering model, the Multiple Species Flocking clustering model (MSF), and present a distributed multi-agent MSF approach for document clustering.
机译:克劳格·雷诺兹(Craig Reynolds)首次提出的植绒模型(Flocking model)是最早受到生物启发的计算集体行为模型之一,该模型具有许多流行的应用程序,例如动画。我们的早期研究已经得出了一种羊群聚类算法,该算法可以实现比K-means或Ant聚类算法更好的数据聚类性能。该算法通过将高维数据项嵌入二维网格中来生成给定数据集的聚类,以实现有效的聚类结果检索和可视化。在本文中,我们提出了一个受生物启发的聚类模型,即“多物种聚集”聚类模型(MSF),并提出了一种用于文档聚类的分布式多主体MSF方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号