【24h】

Multitarget Filtering Using a Multitarget First-Order Moment Statistic

机译:使用多目标一阶矩统计量进行多目标过滤

获取原文
获取原文并翻译 | 示例

摘要

The theoretically optimal approach to multitarget detection, tracking, and identification is a suitable generalization of the recursive Bayes nonlinear filter. This approach will never be of practical interest without the development of drastic but principled approximation strategies. In single-target problems, the computationally fastest approximate filtering approach is the constant-gain Kalman filter. This filter propagates a first-order statistical moment of the single-target system (the posterior expectation) in the place of the posterior distribution. This paper describes an analogous strategy: propagation of a first-order statistical moment of the multitarget system. This moment, the probability hypothesis density (PHD), is the density function on single-target state space that is uniquely defined by the following property: its integral in any region of states space is the expected number of targets in that region. We describe recursive Bayes filter equations for the PHD that account for multiple sensors, missed detections and false alarms, and appearance and disappearance of targets.
机译:理论上最优的多目标检测,跟踪和识别方法是递归贝叶斯非线性滤波器的合适概括。如果没有制定严格但有原则的近似策略,这种方法将永远不会具有实际意义。在单目标问题中,计算最快的近似滤波方法是恒定增益卡尔曼滤波器。该过滤器在后验分布的位置传播单目标系统的一阶统计矩(后验期望)。本文介绍了一种类似的策略:多目标系统的一阶统计矩的传播。此刻,概率假设密度(PHD)是单目标状态空间上的密度函数,该函数由以下属性唯一定义:它在状态空间任何区域中的积分都是该区域中目标的预期数量。我们描述了PHD的递归贝叶斯滤波器方程,该方程考虑了多个传感器,错过的检测和错误警报以及目标的出现和消失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号