【24h】

Sampling Theory for Process Detection with Applications to Surveillance and Tracking

机译:用于过程检测的采样理论及其在监视和跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the link between the rate at which events are observed by a monitoring system and the ability of the system to effectively perform its tracking and surveillance tasks. In general, higher sampling rates provide better performance, but they also require more resources, both computationally and from the sensing infrastructure. We have used Hidden Markov Models to describe the dynamic processes to be monitored and (α,β)-currency as a performance measure for the monitoring system. Our ultimate goal is to be able to determine the minimum sampling rate at which we can still fulfill the performance requirements of our system. Along with the theoretical work, we have performed simulation-based tests to examine the validity of our approach; we compare performance results obtained by simulation with the theoretical value obtained a priori from the scenario parameters and illustrate with a simple example a technique for estimating the required sampling rate to achieve a given level of performance.
机译:在本文中,我们调查了监视系统观察事件的速率与系统有效执行其跟踪和监视任务的能力之间的联系。通常,较高的采样率可提供更好的性能,但它们也需要更多的资源,无论是在计算方面还是在传感基础结构方面。我们使用隐马尔可夫模型来描述要监视的动态过程,并使用(α,β)货币作为监视系统的性能指标。我们的最终目标是能够确定仍能满足系统性能要求的最小采样率。随着理论工作的进行,我们进行了基于仿真的测试,以检验我们方法的有效性。我们将通过仿真获得的性能结果与从场景参数中获得的先验理论值进行比较,并通过一个简单的示例说明用于估算达到给定性能水平所需的采样率的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号