首页> 外文会议>Conference on Metroloty, Inspection, and Process Control for Microlithography XVIII pt.1; 20040223-20040226; Santa Clara,CA; US >Spectroscopic ellipsometry-based scatterometry for depth and line width measurements of polysilicon-filled deep trenches
【24h】

Spectroscopic ellipsometry-based scatterometry for depth and line width measurements of polysilicon-filled deep trenches

机译:基于椭圆偏振光谱的散射测量法,用于测量多晶硅填充的深沟槽的深度和线宽

获取原文
获取原文并翻译 | 示例

摘要

Polysilicon recess etch process control in deep trench arrays of a DRAM requires reliable measurements of the recess depth directly in the trench array. Until now Atomic Force Microscopy (AFM) has been used for post etch depth measurements. However, with decreasing lateral trench dimensions, AFM may approach its limits especially with respect to the available bottom travel length. Consequently, alternative metrology methods are of interest. Scatterometry is an optical, model based measurement technique which potentially allows a full reconstruction of the measured structure. The measurement of the polysilicon recess presents a number of challenges: (1) the recess depth (150nm to 300nm) is much smaller than the total height of the complete structure (several microns), (2) spacer-like sidewall layers are present, while (3) unpredictable effects may be present (e.g. voids in the polysilicon fill) and would be difficult to include into a grating model. In addition, for measurements within the trench array 3D capability is required. In this work we analyze the capability of 2D and 3D scatterometry for polysilicon recess depth process control. We evaluate parameter sensitivities, parameter correlations, measurement robustness, depth correlation to the trench array, precision and accuracy for a wide range of process variations by comparing results obtained by scatterometry to those obtained by AFM and SEM cross sections. We show that a simplified grating model provides accurate measurements in lines/spaces structures (2D). However, in trench arrays (3D) the trench depth sensitivity is critical.
机译:DRAM的深沟槽阵列中的多晶硅凹陷蚀刻工艺控制要求直接在沟槽阵列中可靠地测量凹陷深度。到目前为止,原子力显微镜(AFM)已用于蚀刻后深度测量。但是,随着横向沟槽尺寸的减小,AFM可能会达到其极限,尤其是在可用的底部行进长度方面。因此,替代计量方法是令人关注的。散射测量是一种基于光学的,基于模型的测量技术,有可能允许对所测量的结构进行完全重建。多晶硅凹槽的测量提出了许多挑战:(1)凹槽深度(150nm至300nm)比完整结构的总高度(几微米)小得多;(2)存在类似垫片的侧壁层, (3)可能会出现不可预测的影响(例如,多晶硅填充物中的空隙),并且很难将其包含在光栅模型中。另外,在沟槽阵列内进行测量需要3D功能。在这项工作中,我们分析了2D和3D散射测量法对多晶硅凹进深度过程控制的能力。我们通过比较散射法获得的结果与AFM和SEM截面获得的结果,来评估参数敏感性,参数相关性,测量稳健性,与沟槽阵列的深度相关性,各种工艺变化的精度和准确性。我们表明,简化的光栅模型可以在线/空间结构(2D)中提供准确的测量结果。但是,在沟槽阵列(3D)中,沟槽深度灵敏度至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号