【24h】

Face recognition method based on independent component analysis and BP neural network

机译:基于独立成分分析和BP神经网络的人脸识别方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new face recognition method combining independent component analysis (ICA) and BP neural network, named ICABP method, is proposed. Researchers have shown that ICA using higher order statistics is more powerful for face recognition than PCA using up to second order statistics only. However, when the database includes faces with various expressions and different orientations, the superiority of ICA method cannot be shown obviously. In this paper, the FastICA algorithm is used to extract the independent sources from the face images. Then the conventional minimum Euclidean distance method is replaced by an improved BP neural network with one hidden layer to recognize the faces. The function of local features extraction of ICA and the adaptability of BP neural network are combined perfectly. The experimental results show that our ICABP method is an effective and feasible face recognition method.
机译:提出了一种结合独立成分分析(ICA)和BP神经网络的人脸识别方法,即ICABP方法。研究人员表明,与仅使用最多二阶统计信息的PCA相比,使用高阶统计信息的ICA对人脸识别的功能更为强大。但是,当数据库中包含具有不同表情和不同方向的面部时,ICA方法的优越性无法明显体现。在本文中,使用FastICA算法从人脸图像中提取独立来源。然后,将传统的最小欧几里德距离方法替换为带有一个隐藏层的改进型BP神经网络以识别人脸。 ICA的局部特征提取功能与BP神经网络的适应性完美结合。实验结果表明,我们的ICABP方法是一种有效可行的人脸识别方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号