首页> 外文期刊>IEEE Transactions on Neural Networks >A neural-network appearance-based 3-D object recognition using independent component analysis
【24h】

A neural-network appearance-based 3-D object recognition using independent component analysis

机译:使用独立成分分析的基于神经网络外观的3D对象识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents results on appearance-based three-dimensional (3-D) object recognition (3DOR) accomplished by utilizing a neural-network architecture developed based on independent component analysis (ICA). ICA has already been applied for face recognition in the literature with encouraging results. In this paper, we are exploring the possibility of utilizing the redundant information in the visual data to enhance the view based object recognition. The underlying premise here is that since ICA uses high-order statistics, it should in principle outperform principle component analysis (PCA), which does not utilize statistics higher than two, in the recognition task. Two databases of images captured by a CCD camera are used. It is demonstrated that ICA did perform better than PCA in one of the databases, but interestingly its performance was no better than PCA in the case of the second database. Thus, suggesting that the use of ICA may not necessarily always give better results than PCA, and that the application of ICA is highly data dependent. Various factors affecting the differences in the recognition performance using both methods are also discussed.
机译:本文介绍了利用基于独立成分分析(ICA)开发的神经网络体系结构完成的基于外观的三维(3-D)对象识别(3DOR)的结果。 ICA已经在文献中应用于人脸识别,并取得了令人鼓舞的结果。在本文中,我们正在探索利用视觉数据中的冗余信息来增强基于视图的对象识别的可能性。这里的基本前提是,由于ICA使用高阶统计量,因此它在识别任务中原则上应胜过不使用大于两个的统计量的主成分分析(PCA)。使用了两个由CCD摄像机捕获的图像数据库。事实证明,在其中一个数据库中,ICA的性能优于PCA,但是有趣的是,在第二个数据库中,ICA的性能并不比PCA好。因此,表明ICA的使用不一定总是比PCA产生更好的结果,并且ICA的应用高度依赖于数据。还讨论了使用这两种方法影响识别性能差异的各种因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号