【24h】

Fluorescent imprinted polymers for detection of explosive nitro-aromatic compounds

机译:荧光印迹聚合物,用于检测爆炸性硝基芳族化合物

获取原文
获取原文并翻译 | 示例

摘要

Molecular recognition is an important aspect of any biosensor system. Due to increased stability in a variety of environmental conditions, molecular imprinted polymer (MIP) technology is an attractive alternative to biological-based recognition. This is particularly true in the case of improvised explosive device detection, in which the sensor must be capable of detecting trace amounts of airborne nitroaromatic compounds. In an effort to create a sensor for detection of explosive devices via nitroaromatic vapor, MIPs have been deployed as a molecular recognition tool in a fluorescence-based optical biosensor. These devices are easily scalable to a very small size, and are also robust and durable. To achieve such a sensor scheme, polymer microparticles synthesized using methacrylic acid monomer and imprinted with a 2,4-dinitrotoluene (DNT) template were fabricated. These microparticles were then conjugated with green CdSe/ZnS quantum dots, creating fluorescent MIP microparticles. When exposed to the DNT template, rebinding occurred between the DNT and the imprinted sites of the MIP microparticles. This brings the nitroaromatic DNT into close proximity to the quantum dots, allowing the DNT to accept electrons from the fluorescent species, thereby quenching the fluorescence of the quantum dot. Results indicate that this novel method for synthesizing fluorescent MIPs and their integration into an optical biosensor produced observable fluorescence quenching upon exposure to DNT.
机译:分子识别是任何生物传感器系统的重要方面。由于在各种环境条件下稳定性的提高,分子印迹聚合物(MIP)技术是基于生物的识别的一种有吸引力的替代方法。在简易爆炸装置检测中,尤其如此,其中传感器必须能够检测痕量的空气中硝基芳香族化合物。为了创建一种用于通过硝基芳族蒸气检测爆炸装置的传感器,MIP已被用作基于荧光的光学生物传感器中的分子识别工具。这些设备可以轻松扩展到非常小的尺寸,并且坚固耐用。为了实现这种传感器方案,制造了使用甲基丙烯酸单体合成并印有2,4-二硝基甲苯(DNT)模板的聚合物微粒。然后将这些微粒与绿色的CdSe / ZnS量子点缀合,生成荧光MIP微粒。当暴露于DNT模板时,DNT与MIP微粒的印迹位点之间发生重新结合。这使硝基芳族DNT紧邻量子点,从而使DNT接受来自荧光物质的电子,从而淬灭了量子点的荧光。结果表明,这种合成荧光MIP并将其整合到光学生物传感器中的新方法在暴露于DNT后可产生可观察到的荧光猝灭。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号