首页> 外文会议>Computing, Measurement, Control and Sensor Network (CMCSN), 2012 International Conference on >Parameters Optimization and Application of v-Support Vector Machine Based on Particle Swarm Optimization Algorithm
【24h】

Parameters Optimization and Application of v-Support Vector Machine Based on Particle Swarm Optimization Algorithm

机译:基于粒子群算法的v-支持向量机参数优化与应用

获取原文
获取原文并翻译 | 示例

摘要

The standard support vector machine (SVM) is a common method of machine learning, the parameters selection of SVM affects the machine learning ability directly. At present, the research on the choice of SVM parameters is still no uniform approach. In order to avoid the difficult problem of selecting parameters, this paper used a deformed SVM, that is, v-SVM, selected parameters of v-SVM by particle swarm optimization algorithm, and used the optimized parameters in a non-specific persons, isolated words, medium-vocabulary speech recognition system. The experimental results show that this optimizing v-SVM parameters method gets better speech recognition correct rates than general parameters selection ways in different signal to noise ratios and different words. So the method is effective feasible, the optimized parameters make v-SVM have good generalization, the speech recognition results and convergence rate have been improved.
机译:标准支持向量机(SVM)是一种常见的机器学习方法,SVM的参数选择直接影响机器学习能力。目前,关于支持向量机参数选择的研究还不是统一的方法。为了避免参数选择的困难,本文采用了变形的支持向量机,即v-SVM,通过粒子群优化算法选择了v-SVM的参数,并将优化后的参数用于非特定人,孤立单词,中词汇语音识别系统。实验结果表明,在不同信噪比和不同单词的情况下,这种优化的v-SVM参数方法比常规参数选择方法具有更好的语音识别正确率。因此该方法是有效可行的,优化后的参数使v-SVM具有良好的泛化能力,提高了语音识别效果和收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号