首页> 外文会议>Computing, Measurement, Control and Sensor Network (CMCSN), 2012 International Conference on >Causal Connectivity Brain Network: A Novel Method of Motor Imagery Classification for Brain-Computer Interface Applications
【24h】

Causal Connectivity Brain Network: A Novel Method of Motor Imagery Classification for Brain-Computer Interface Applications

机译:因果连通性脑网络:脑计算机接口应用程序的运动图像分类的一种新方法。

获取原文
获取原文并翻译 | 示例

摘要

The effective connectivity among overlapped core regions recruited by motor imagery (MI) was explored by means of Granger causality and graph-theoretic method, based on Electroencephalography (EEG) data. In this paper, causal connectivity brain network (CCBN) was proposed for the classification of motor imagery for brain¨Ccomputer interface applications, by means of source analysis of scalp-recorded EEGs and effective connectivity networks. A classification rate of about 90% was achieved in the human subject studied using both the equivalent dipole analysis and the granger causality analysis. The present promising results suggest that the CCBN could manifest a clearer picture on the cortical activity and explore the causal relation among the independent sources, and thus facilitate the classification of MI tasks from scalp EEGs for brain-computer interface (BCI).
机译:基于脑电图(EEG)数据,通过格兰杰因果关系和图论方法探索了运动图像(MI)招募的重叠核心区域之间的有效连通性。本文通过对头皮记录的脑电图的来源分析和有效的连通性网络,提出了因果连通性大脑网络(CCBN)用于脑计算机接口应用的运动图像分类。使用等效偶极分析和格兰杰因果分析,在研究的人类受试者中实现了约90%的分类率。目前有希望的结果表明,CCBN可以表现出更清晰的皮层活动图,并探究独立来源之间的因果关系,从而有助于从头皮脑电图为脑机接口(BCI)进行MI任务分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号