首页> 外文会议>Computing, Electronics and Electrical Technologies (ICCEET), 2012 International Conference on >Verdict of association rule using systematic approach of time slicing for efficient pattern discovery
【24h】

Verdict of association rule using systematic approach of time slicing for efficient pattern discovery

机译:使用系统的时间分片方法对关联规则进行判定以进行有效的模式发现

获取原文
获取原文并翻译 | 示例

摘要

In Data mining, Association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. The main task of association rule mining is to mine association rules by using minimum support thresholds, which could be explicitly specified by the users. Minimum support threshold is the one which differentiates frequently observed patterns from infrequent patterns from large number of transactional databases. In algorithms like association rule mining, sequential pattern mining, structured pattern mining, correlation mining, and associative classification, minimum support threshold is set up, by the user, to uncover the frequent patterns. Detecting a complete set of association rules is the desired aspect in data mining. But whenever the user specifies minimum support threshold, there is an ample chance of losing some association rules. This may lead to incompatible decisions. To overcome this problem, systematic algorithm has been proposed in this paper. In this algorithm, the user is not allowed to specify any minimum support threshold values to find the frequent patterns; instead the system itself generates the minimum threshold values, thus plugging the loophole of other algorithms. Using this approach, the user is well aware of entire information aiding him to take correct informed decisions. We also introduce the concept of timing algorithm along with the systematic algorithm, which will statically assign a unique value to each record of the transactional database. This technique is mainly used to save time by scanning through the entire transactional database only once rather than making multiple scans. The benefit of one scan database leads to better performance and minimization of time.
机译:在数据挖掘中,关联规则学习是发现大型数据库中变量之间有趣关系的一种流行且经过充分研究的方法。关联规则挖掘的主要任务是通过使用可由用户明确指定的最小支持阈值来挖掘关联规则。最小支持阈值是一种区分频繁观察到的模式和大量事务性数据库中不常见模式的阈值。在诸如关联规则挖掘,顺序模式挖掘,结构化模式挖掘,相关性挖掘和关联分类之类的算法中,用户设置了最小支持阈值以发现频繁的模式。检测一组完整的关联规则是数据挖掘中的理想方面。但是,只要用户指定了最小支持阈值,就有很多机会失去一些关联规则。这可能导致不兼容的决策。为了克服这个问题,本文提出了系统的算法。在这种算法中,不允许用户指定任何最小支持阈值来查找频繁模式;相反,系统本身会生成最小阈值,从而堵塞了其他算法的漏洞。使用这种方法,用户可以充分了解整个信息,从而帮助他做出正确的明智决定。我们还将介绍定时算法的概念以及系统算法,该算法将为事务数据库的每个记录静态分配一个唯一值。该技术主要用于通过一次扫描整个事务数据库而不是进行多次扫描来节省时间。一个扫描数据库的优势可以带来更好的性能和最短的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号