首页> 外文会议>Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on >Two-person interaction detection using body-pose features and multiple instance learning
【24h】

Two-person interaction detection using body-pose features and multiple instance learning

机译:利用人体姿势特征和多实例学习进行两人互动检测

获取原文
获取原文并翻译 | 示例

摘要

Human activity recognition has potential to impact a wide range of applications from surveillance to human computer interfaces to content based video retrieval. Recently, the rapid development of inexpensive depth sensors (e.g. Microsoft Kinect) provides adequate accuracy for real-time full-body human tracking for activity recognition applications. In this paper, we create a complex human activity dataset depicting two person interactions, including synchronized video, depth and motion capture data. Moreover, we use our dataset to evaluate various features typically used for indexing and retrieval of motion capture data, in the context of real-time detection of interaction activities via Support Vector Machines (SVMs). Experimentally, we find that the geometric relational features based on distance between all pairs of joints outperforms other feature choices. For whole sequence classification, we also explore techniques related to Multiple Instance Learning (MIL) in which the sequence is represented by a bag of body-pose features. We find that the MIL based classifier outperforms SVMs when the sequences extend temporally around the interaction of interest.
机译:人体活动识别具有影响从监视到人机界面再到基于内容的视频检索等广泛应用的潜力。最近,廉价的深度传感器(例如Microsoft Kinect)的快速发展为活动识别应用程序的实时全身人体跟踪提供了足够的精度。在本文中,我们创建了一个复杂的人类活动数据集,描述了两个人的互动,包括同步的视频,深度和运动捕捉数据。此外,在通过支持向量机(SVM)实时检测交互活动的情况下,我们使用数据集评估通常用于索引和检索运动捕获数据的各种功能。在实验上,我们发现基于所有对关节之间距离的几何关系特征优于其他特征选择。对于整个序列分类,我们还探索了与多实例学习(MIL)相关的技术,在该技术中,序列由一袋身体姿势特征表示。我们发现,当序列围绕感兴趣的相互作用在时间上扩展时,基于MIL的分类器优于SVM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号