首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Detecting activities of daily living in first-person camera views
【24h】

Detecting activities of daily living in first-person camera views

机译:通过第一人称视角查看日常生活中的活动

获取原文
获取原文并翻译 | 示例

摘要

We present a novel dataset and novel algorithms for the problem of detecting activities of daily living (ADL) in firstperson camera views. We have collected a dataset of 1 million frames of dozens of people performing unscripted, everyday activities. The dataset is annotated with activities, object tracks, hand positions, and interaction events. ADLs differ from typical actions in that they can involve long-scale temporal structure (making tea can take a few minutes) and complex object interactions (a fridge looks different when its door is open). We develop novel representations including (1) temporal pyramids, which generalize the well-known spatial pyramid to approximate temporal correspondence when scoring a model and (2) composite object models that exploit the fact that objects look different when being interacted with. We perform an extensive empirical evaluation and demonstrate that our novel representations produce a two-fold improvement over traditional approaches. Our analysis suggests that real-world ADL recognition is “all about the objects,” and in particular, “all about the objects being interacted with.”
机译:我们提出了一个新颖的数据集和新颖的算法,用于检测第一人称视角中的日常生活(ADL)活动。我们已经收集了一个由100万人组成的数据集,其中包含数十个人执行无脚本的日常活动。数据集带有活动,对象轨迹,手部位置和交互事件的注释。 ADL与典型动作的不同之处在于,它们可能涉及长期的时间结构(泡茶可能需要几分钟的时间)和复杂的对象交互作用(冰箱的门打开时看上去会有所不同)。我们开发了新颖的表示形式,包括(1)时间金字塔,当对模型进行评分时,该金字塔将众所周知的空间金字塔归纳为近似的时间对应关系;以及(2)利用对象在交互时看起来不同的事实的复合对象模型。我们进行了广泛的实证评估,并证明我们的新颖表现形式比传统方法产生了两倍的改进。我们的分析表明,现实世界中的ADL识别是“关于对象的所有”,尤其是“关于正在与之交互的所有对象”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号