首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Saliency filters: Contrast based filtering for salient region detection
【24h】

Saliency filters: Contrast based filtering for salient region detection

机译:显着性过滤器:基于对比度的过滤,用于显着区域检测

获取原文
获取原文并翻译 | 示例

摘要

Saliency estimation has become a valuable tool in image processing. Yet, existing approaches exhibit considerable variation in methodology, and it is often difficult to attribute improvements in result quality to specific algorithm properties. In this paper we reconsider some of the design choices of previous methods and propose a conceptually clear and intuitive algorithm for contrast-based saliency estimation. Our algorithm consists of four basic steps. First, our method decomposes a given image into compact, perceptually homogeneous elements that abstract unnecessary detail. Based on this abstraction we compute two measures of contrast that rate the uniqueness and the spatial distribution of these elements. From the element contrast we then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore- and background. We show that the complete contrast and saliency estimation can be formulated in a unified way using high-dimensional Gaussian filters. This contributes to the conceptual simplicity of our method and lends itself to a highly efficient implementation with linear complexity. In a detailed experimental evaluation we analyze the contribution of each individual feature and show that our method outperforms all state-of-the-art approaches.
机译:显着性估计已成为图像处理中的重要工具。但是,现有的方法在方法上表现出很大的差异,并且通常很难将结果质量的提高归因于特定的算法属性。在本文中,我们重新考虑了先前方法的一些设计选择,并提出了一种基于概念的清晰直观的算法,用于基于对比度的显着性估计。我们的算法包括四个基本步骤。首先,我们的方法将给定的图像分解为紧凑的,感知上均一的元素,从而抽象出不必要的细节。基于此抽象,我们计算出两种对比度量,以评估这些元素的唯一性和空间分布。然后从元素对比中得出显着性度量,该显着性度量将生成像素精确的显着性贴图,该贴图均匀地覆盖感兴趣的对象,并始终将前景色和背景色分开。我们表明,可以使用高维高斯滤波器以统一的方式制定完整的对比度和显着性估计。这有助于我们方法的概念简单性,并使其具有线性复杂性的高效实现。在详细的实验评估中,我们分析了每个单独功能的作用,并表明我们的方法优于所有最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号