首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Learning 3D object templates by hierarchical quantization of geometry and appearance spaces
【24h】

Learning 3D object templates by hierarchical quantization of geometry and appearance spaces

机译:通过几何和外观空间的分层量化学习3D对象模板

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for learning 3D object templates from view labeled object images. The 3D template is defined in a joint appearance and geometry space composed of deformable planar part templates placed at different 3D positions and orientations. Appearance of each part template is represented by Gabor filters, which are hierarchically grouped into line segments and geometric shapes. AND-OR trees are further used to quantize the possible geometry and appearance of part templates, so that learning can be done on a subsampled discrete space. Using information gain as a criterion, the best 3D template can be searched through the AND-OR trees using one bottom-up pass and one top-down pass. Experiments on a new car dataset with diverse views show that the proposed method can learn meaningful 3D car templates, and give satisfactory detection and view estimation performance. Experiments are also performed on a public car dataset, which show comparable performance with recent methods.
机译:本文提出了一种从视图标记的对象图像中学习3D对象模板的方法。 3D模板定义在关节外观和几何空间中,该空间由放置在不同3D位置和方向的可变形平面零件模板组成。每个零件模板的外观均由Gabor过滤器表示,这些过滤器按层次结构分为线段和几何形状。 AND-OR树还用于量化零件模板的可能几何形状和外观,以便可以在子采样的离散空间上进行学习。以信息增益为标准,可以使用一个自下而上的遍历和一个自上而下的遍历通过AND-OR树搜索最佳3D模板。在具有不同视图的新汽车数据集上进行的实验表明,该方法可以学习有意义的3D汽车模板,并提供令人满意的检测和视图估计性能。实验还在公共汽车数据集上进行,显示了与最新方法相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号