首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering
【24h】

Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering

机译:用于组织病理学癌症图像分类,分割和聚类的多聚类实例学习

获取原文

摘要

Cancer tissues in histopathology images exhibit abnormal patterns; it is of great clinical importance to label a histopathology image as having cancerous regions or not and perform the corresponding image segmentation. However, the detailed annotation of cancer cells is often an ambiguous and challenging task. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL), to classify, segment and cluster cancer cells in colon histopathology images. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), pixel-level segmentation (cancer vs. non-cancer tissue), and patch-level clustering (cancer subclasses). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to perform the above three tasks in an integrated framework. Experimental results demonstrate the efficiency and effectiveness of MCIL in analyzing colon cancers.
机译:组织病理学图像中的癌组织表现出异常模式。将组织病理学图像标记为有或没有癌变区域并进行相应的图像分割具有非常重要的临床意义。然而,癌细胞的详细注释通常是一个模棱两可且具有挑战性的任务。在本文中,我们提出了一种新的学习方法,即多聚类实例学习(MCIL),以对结肠组织病理学图像中的癌细胞进行分类,分割和聚类。所提出的MCIL方法同时执行图像级别分类(癌症和非癌症图像),像素级别分割(癌症与非癌症组织)和补丁级别聚类(癌症子类)。我们将群集概念嵌入到多实例学习(MIL)设置中,并得出了在集成框架中执行上述三个任务的有原则的解决方案。实验结果证明了MCIL在分析结肠癌中的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号