首页> 外文会议>Computer vision and image analysis of art II >Boosting multi-feature visual texture classifiers for the authentication of Jackson Pollock's drip paintings
【24h】

Boosting multi-feature visual texture classifiers for the authentication of Jackson Pollock's drip paintings

机译:增强多功能视觉纹理分类器,以验证杰克逊·波洛克的滴画

获取原文
获取原文并翻译 | 示例

摘要

Early attempts at authentication Jackson Pollock's drip paintings based on computer image analysis were restricted to a single "fractal" or "multi-fractal" visual feature, and achieved classification nearly indistinguishable from chance. Irfan and Stork pointed out that such Pollock authentication is an instance of visual texture recognition, a large discipline that universally relies on multiple visual features, and showed that modest, but statistically significant improvement in recognition accuracy can be achieved through the use of multiple features. Our work here extends such multi-feature classification by training on more image data and images of higher resolution of both genuine Pollocks and fakes. We exploit methods for feature extraction, feature selection and classifier techniques commonly used in pattern recognition research including Support Vector Machines (SVM), decision trees (DT), and AdaBoost. We extract features from the fractality, multifractality, pink noise patterns, topolog-ical genus, and curvature properties of the images of candidate paintings, and address learning issues that have arisen due to the small number of examples. In our experiments, we found that the unmodified classifiers like Support Vector Machines or Decision Tree alone give low accuracies (60%), but that statistical boosting through AdaBoost leads to accuracies of nearly 75%. Thus, although our set of observations is very small, we conclude that boosting methods can improve the accuracy of multi-feature classification of Pollock's drip paintings.
机译:早期基于计算机图像分析对杰克逊·波洛克的滴画进行身份验证的尝试仅限于单个“分形”或“多分形”视觉特征,并且几乎没有机会实现分类。 Irfan和Stork指出,这种Pollock身份验证是视觉纹理识别的一个实例,这是一个普遍依赖于多个视觉特征的大型学科,并表明通过使用多个特征可以实现识别准确性的适度但统计上显着的提高。我们在这里的工作是通过训练更多的图像数据和真正的波洛克和假货的高分辨率图像来扩展这种多特征分类的。我们利用模式识别研究中常用的特征提取,特征选择和分类器技术,包括支持向量机(SVM),决策树(DT)和AdaBoost。我们从分形,多重分形,粉红色噪声模式,拓扑学属类和候选绘画图像的曲率特性中提取特征,并解决由于示例数量较少而引起的学习问题。在我们的实验中,我们发现未修改的分类器(如支持向量机或决策树)仅具有较低的准确性(60%),但是通过AdaBoost进行的统计提升导致准确性接近75%。因此,尽管我们的观察结果很小,但是我们得出结论,增强方法可以提高波洛克滴画多特征分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号