首页> 外文会议>Computer Modelling and Simulation, 2009. UKSIM '09 >Real-Time Tracking of Packet-Pair Dispersion Nodes Using the Kernel-Density and Gaussian-Mixture Models
【24h】

Real-Time Tracking of Packet-Pair Dispersion Nodes Using the Kernel-Density and Gaussian-Mixture Models

机译:使用核密度和高斯混合模型的分组对色散节点实时跟踪

获取原文
获取原文并翻译 | 示例

摘要

A brief simulation study of real-time packet dispersion mode-tracking using the Gaussian-mix model (originally devised for real-time background classification in moving pictures) and an adaptation of the kernel-density estimator is presented. The simulated environment consisted of two FIFO store-and-forward nodes where the probe packets interact with Poisson and Pareto-generated cross-traffic with a range of packet sizes. The two models produced broadly similar results, able to track node activity under the dynamically changing conditions associated with the Pareto cross-traffic. The Gaussian model sometimes replaced the primary mode with a double peak, which disappeared when some of the modelpsilas parameters were changed.
机译:提出了一个简短的模拟研究,该研究使用高斯混合模型(最初是为运动图像中的实时背景分类而设计的)和内核密度估计器的改编而进行的实时数据包分散模式跟踪。模拟环境由两个FIFO存储转发节点组成,其中探测数据包与Poisson和Pareto生成的具有一定数据包大小的交叉流量交互。两种模型产生的结果大致相似,能够在与帕累托交叉交通相关的动态变化条件下跟踪节点活动。高斯模型有时用一个双峰代替了主模,当某些Modelpsilas参数发生变化时,该峰消失了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号