首页> 外文期刊>Signal Processing, IEEE Transactions on >An Efficient Compartmental Model for Real-Time Node Tracking Over Cognitive Wireless Sensor Networks
【24h】

An Efficient Compartmental Model for Real-Time Node Tracking Over Cognitive Wireless Sensor Networks

机译:认知无线传感器网络上实时节点跟踪的有效隔离模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient compartmental model for real-time node tracking over cognitive wireless sensor networks is proposed. The compartmental model is developed in a multi-sensor fusion framework with cognitive bandwidth utilization. The multi-sensor data attenuation model using radio, acoustic, and visible light signal is first derived using a sum of exponentials model. A compartmental model that selectively combines the multi-sensor data is then developed. The selection of individual sensor data is based on the criterion of bandwidth utilization. The parameters of the compartmental model are computed using the modified Prony estimator, which results in high tracking accuracies. Additional advantages of the proposed method include lower computational complexity and asymptotic distribution of the estimator. Cramer-Rao bound and elliptical error probability analysis are also discussed to highlight the advantages of the compartmental model. Experimental results for real-time node tracking in indoor environment indicate a significant improvement in tracking performance when compared to state-of-the-art methods in literature.
机译:本文提出了一种用于认知无线传感器网络上实时节点跟踪的有效隔离模型。隔室模型是在具有认知带宽利用率的多传感器融合框架中开发的。首先使用指数和模型推导使用无线电,声波和可见光信号的多传感器数据衰减模型。然后开发选择性地组合多传感器数据的隔室模型。单个传感器数据的选择基于带宽利用率的标准。使用改进的Prony估计器来计算隔室模型的参数,这会导致较高的跟踪精度。所提出的方法的其他优点包括较低的计算复杂度和估计器的渐近分布。还讨论了Cramer-Rao边界和椭圆误差概率分析,以突出区室模型的优势。与文献中的最新方法相比,在室内环境中进行实时节点跟踪的实验结果表明,跟踪性能有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号