首页> 外文会议>Computer Modelling and Simulation, 2009. UKSIM '09 >Pattern Identification for Feed Control Strategy Using Fuzzy Neural Algorithm
【24h】

Pattern Identification for Feed Control Strategy Using Fuzzy Neural Algorithm

机译:基于模糊神经算法的进给控制策略模式识别

获取原文

摘要

Smelters have a difficult task in the reduction of the green house gas emission (GHG) by decreasing anode effect. When alumina buck concentration reaches critical levels an anode effects occurs and express itself as a suddenly increase in voltage. Vertical Stub Soderberg (VSS) Side Break pots had no improvements on alumina control in the past decade due the complexity of the problem. The pot is fed every two hours with a fix amount of alumina and the actual feed adjustment is done in a manual daily basis. Based on Prebaked feed control strategy; a model was developed based on a pattern identification algorithm using neuro-fuzzy networks. This algorithm will determine the patterns of the alumina concentration using the pseudo resistance shape curve of the pot. This information provides the amount of alumina that will be fed in the next cycle without mucking the pot and avoiding anode effect.
机译:通过降低阳极效应来降低温室气体排放量(GHG),冶炼厂的任务艰巨。当氧化铝降压浓度达到临界水平时,会发生阳极效应,并表现为电压突然升高。由于问题的复杂性,在过去的十年中,立式短管Soderberg(VSS)旁裂罐对氧化铝的控制没有任何改进。每两个小时向锅中喂入一定量的氧化铝,实际的喂料调整是每天手动进行的。基于预焙饲料控制策略;基于模式识别算法的神经模糊网络开发了一个模型。该算法将使用电位计的伪电阻形状曲线确定氧化铝浓度的模式。该信息提供了在下一个循环中将要送入的氧化铝的量,而不会弄脏反应罐并避免阳极效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号