首页> 外文会议>Computational Methods in Systems Biology; Lecture Notes in Bioinformatics; 4210 >A Numerical Aggregation Algorithm for the Enzyme-Catalyzed Substrate Conversion
【24h】

A Numerical Aggregation Algorithm for the Enzyme-Catalyzed Substrate Conversion

机译:酶催化底物转化的数值聚合算法

获取原文
获取原文并翻译 | 示例

摘要

Computational models of biochemical systems are usually very large, and moreover, if reaction frequencies of different reaction types differ in orders of magnitude, models possess the mathematical property of stiffness, which renders system analysis difficult and often even impossible with traditional methods. Recently, an accelerated stochastic simulation technique based on a system partitioning, the slow-scale stochastic simulation algorithm, has been applied to the enzyme-catalyzed substrate conversion to circumvent the inefficiency of standard stochastic simulation in the presence of stiffness. We propose a numerical algorithm based on a similar partitioning but without resorting to simulation. The algorithm exploits the connection to continuous-time Markov chains and decomposes the overall problem to significantly smaller sub-problems that become tractable. Numerical results show enormous efficiency improvements relative to accelerated stochastic simulation.
机译:生化系统的计算模型通常非常大,而且,如果不同反应类型的反应频率在数量级上有所不同,则模型具有刚度的数学特性,这使得使用传统方法进行系统分析变得困难甚至常常是不可能的。近来,基于系统划分的加速随机模拟技术,即慢速随机模拟算法,已经被应用于酶催化的底物转化,从而避免了在存在刚度的情况下标准随机模拟的效率低下。我们提出了一种基于相似分区但不求助于模拟的数值算法。该算法利用了与连续时间马尔可夫链的连接,并将整个问题分解为可处理的明显较小的子问题。数值结果表明,相对于加速随机仿真,效率有很大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号