首页> 外文会议>Computational Methods and Clinical Applications for Spine Imaging >Localization and Segmentation of 3D Intervertebral Discs from MR Images via a Learning Based Method: A Validation Framework
【24h】

Localization and Segmentation of 3D Intervertebral Discs from MR Images via a Learning Based Method: A Validation Framework

机译:MR图像通过基于学习的方法对3D椎间盘进行定位和分割:一种验证框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present the results of evaluating our fully automatic intervertebral disc (IVD) localization and segmentation method using the training data and the test data provided by the localization and segmentation challenge organizers of the 3rd MICCAI Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging - MICCAI-CSI2015. We introduce a validation framework consisting of four standard evaluation criteria to evaluate the performance of our method for both localization and segmentation tasks. More specifically, for localization we propose to use the mean localization distance (MLD) with standard deviation (SD) as well as the successful detection rate with three ranges of accuracy. For segmentation, we propose to use the Dice overlap coefficients (DOC) and average absolute distance (AAD) between the automatic segmented disc surfaces and the associated ground truth. Using the proposed metrics, we first validate our previously introduced approach by conducting a comprehensive leave-one-out experiment on the IVD challenge training data which consists of 15 three-dimensional T2-weighted turbo spin echo magnetic resonance (MR) images and the associated ground truth. For localization, we respectively achieved a successful detection rate of 61, 92, and 93 % when the accuracy range is set to 2.0, 4.0, and 6.0 mm, and a mean localization error of 1.8 ± 0.9 mm. For segmentation, we obtained a mean DOC of 88 % and a mean AAD of 1.4 mm. We further evaluated the performance of our approach on the test-1 dataset consisting of five MR images released at the pre-test stage and the test-2 dataset consisting of another five MR images released at the on-site competition stage. The results were obtained with a blind test where the performance evaluations were conducted by the challenge organizers. For localization on the test-1 dataset we achieved a successful detection rate of 91.4, 100.0, and 100.0% with a MLD±SD of 1.0 ±0.8 mm, and for localization on the test-2 dataset we achieved a successful detection rate of 77.1, 100.0, and 100.0% with a MLD±SD of 1.4 ±0.7 mm, respectively. For segmentation on the test-1 dataset we obtained a mean DOC of 90 % and a mean AAD of 1.2 mm, and for segmentation on the test-2 dataset we obtained a mean DOC of 92 % and a mean AAD of 1.3 mm, respectively.
机译:在本文中,我们介绍了使用第三届MICCAI研讨会和计算方法与临床挑战赛的定位和分段挑战组织者提供的训练数据和测试数据评估全自动椎间盘(IVD)定位和分段方法的结果脊柱成像的应用-MICCAI-CSI2015。我们引入了一个包含四个标准评估标准的验证框架,以评估我们的方法在定位和分割任务方面的性能。更具体地说,对于定位,我们建议使用具有标准偏差(SD)的平均定位距离(MLD)以及具有三个精度范围的成功检测率。对于分割,我们建议使用自动分割的圆盘表面与相关的地面真实情况之间的切块重叠系数(DOC)和平均绝对距离(AAD)。使用提议的指标,我们首先通过对IVD挑战训练数据进行全面的留一法实验来验证我们先前介绍的方法,该实验包括15个三维T2加权涡轮自旋回波磁共振图像(MR)和相关的基本事实。对于定位,当精度范围设置为2.0、4.0和6.0 mm时,我们分别获得了61%,92%和93%的成功检测率,平均定位误差为1.8±0.9 mm。对于细分,我们获得了88%的平均DOC和1.4毫米的平均AAD。我们进一步评估了我们的方法在test-1数据集(由在测试前阶段发布的五张MR图像)和test-2数据集(在现场竞赛阶段发布的另外五张MR图像)上的性能。结果是通过盲测获得的,挑战组织者进行了性能评估。对于test-1数据集的本地化,MLD±SD为1.0±0.8 mm,成功检测率为91.4、100.0和100.0%;对于test-2数据集的本地化,我们成功检测率为77.1。 ,100.0和100.0%,MLD±SD分别为1.4±0.7 mm。对于test-1数据集的分割,我们获得90%的平均DOC和1.2 mm的平均AAD,对于test-2数据集的分割,我们分别获得92%的平均DOC和1.3 mm的平均AAD 。

著录项

  • 来源
  • 会议地点 Munich(DE)
  • 作者单位

    Institute for Surgical Technology Biomechanics, University of Bern, Bern, Switzerland;

    Institute for Surgical Technology Biomechanics, University of Bern, Bern, Switzerland;

    GE Healthcare University of Western Ontario, London, Canada;

    Institute for Surgical Technology Biomechanics, University of Bern, Bern, Switzerland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号