首页> 外文会议>Computational Mechanics >Multiscale Analysis and Numerical Simulations for Stability of Incompressible Periodic Flow of Maxwell Fluid
【24h】

Multiscale Analysis and Numerical Simulations for Stability of Incompressible Periodic Flow of Maxwell Fluid

机译:麦克斯韦流体不可压缩周期性流动稳定性的多尺度分析和数值模拟

获取原文

摘要

For incompressible small-scale flow of Maxwell fluid subject to forcing periodic in space and time, the mean-field equations were obtained by the multiscale asymptotic analysis. A general mathematical formalism was developed to determine the effective tensor. The mean-field equations were derived in detail and the exact explicit expressions of the effective tensor were given for the parallel time-independent flow. For Kolmogorov flow, the critical value of viscosity for stability of the large scale perturbations was obtained by a theoretic analysis of eigenvalues of the homogenized operator in the mean-field equations. And then the original linearized equations were simulated directly by using SIMPLEC algorithm in the collocated grid system. The comparisons between the results of direct numerical simulations and the theoretic predictions of multiscale analysis demonstrate the multiscale asymptotic analysis and the numerical algorithm used in this paper are effective and credible.
机译:对于在时间和空间上受到周期性强迫的麦克斯韦流体的不可压缩小尺度流动,通过多尺度渐近分析得到了平均场方程。发展了一种一般的数学形式主义来确定有效张量。详细推导了平均场方程,并给出了与时间无关的平行流的有效张量的精确表示。对于Kolmogorov流动,通过对均值算子在均场方程中的特征值进行理论分析,获得了粘度对大规模扰动稳定性的临界值。然后在配置网格系统中使用SIMPLEC算法直接对原始线性化方程进行仿真。直接数值模拟的结果与多尺度分析的理论预测之间的比较表明,多尺度渐近分析和本文所使用的数值算法是有效且可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号