首页> 外文会议>Computational linguistics and intelligent text processing >Determining the Polarity and Source of Opinions Expressed in Political Debates
【24h】

Determining the Polarity and Source of Opinions Expressed in Political Debates

机译:确定政治辩论中表达的观点的极性和来源

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate different approaches we developed in order to classify opinion and discover opinion sources from text, using affect, opinion and attitude lexicon. We apply these approaches on the discussion topics contained in a corpus of American Congressional speech data. We propose three approaches to classifying opinion at the speech segment level, firstly using similarity measures to the affect, opinion and attitude lexicon, secondly dependency analysis and thirdly SVM machine learning. Further, we study the impact of taking into consideration the source of opinion and the consistency in the opinion expressed, and propose three methods to classify opinion at the speaker intervention level, showing improvements over the classification of individual text segments. Finally, we propose a method to identify the party the opinion belongs to, through the identification of specific affective and non-affective lexicon used in the argumentations. We present the results obtained when evaluating the different methods we developed, together with a discussion on the issues encountered and some possible solutions. We conclude that, even at a more general level, our approach performs better than trained classifiers on specific data.
机译:在本文中,我们研究了使用情感,观点和态度词典对观点进行分类和从文本中发现观点来源的不同方法。我们将这些方法应用于美国国会演讲数据集所包含的讨论主题。我们提出了三种在语音片段级别上对观点进行分类的方法,首先是对情感,观点和态度词典使用相似性度量,其次是依赖关系分析,其次是SVM机器学习。此外,我们研究了考虑意见来源和意见表达的一致性的影响,并提出了三种在说话人干预级别上对意见进行分类的方法,显示了对各个文本片段分类的改进。最后,我们提出一种方法,通过确定论点中使用的特定情感和非情感词典来确定意见所属的当事人。我们介绍了评估我们开发的不同方法时获得的结果,并讨论了所遇到的问题和一些可能的解决方案。我们得出的结论是,即使在更一般的水平上,我们的方法也比经过训练的分类器对特定数据的效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号