首页> 外文会议>Computational Intelligence, Theory and Applications; Advances in Soft Computing >Estimation of Degree of Polymerisation and Residual Age of Transformers Based on Furfural Levels in Insulating Oil Through Generalized Regression Neural Networks
【24h】

Estimation of Degree of Polymerisation and Residual Age of Transformers Based on Furfural Levels in Insulating Oil Through Generalized Regression Neural Networks

机译:基于糠醛能级的绝缘油中糠醛含量的广义回归神经网络估算变压器的聚合度和剩余寿命

获取原文
获取原文并翻译 | 示例

摘要

Furfural Analysis and Degree of Polymerisation measurements give a measure of the degradation of paper insulation in transformers. These in turn relate to the ageing of transformers. Independent analysis of each of these chemical parameters gives an idea of the residual age of a transformer. But there have been no specific standards established to determine the ageing in transformers. In this paper, there is an attempt to estimate/predict the Degree of Polymerisation and the residual age of a transformer using Artificial Neural Networks given the Furfural component in oil.
机译:糠醛分析和聚合度测量可以衡量变压器中纸绝缘的退化。这些又与变压器的老化有关。对这些化学参数中的每一个进行独立分析,可以了解变压器的剩余寿命。但是,尚未建立确定变压器老化的特定标准。在本文中,尝试使用给定油中的糠醛成分的人工神经网络来估计/预测聚合度和变压器的剩余寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号