首页> 外文会议>Computational Intelligence for Measurement Systems and Applications, 2009. CIMSA '09 >Detecting errors in the ATLAS TDAQ system: A neural networks and support vector machines approach
【24h】

Detecting errors in the ATLAS TDAQ system: A neural networks and support vector machines approach

机译:在ATLAS TDAQ系统中检测错误:神经网络和支持向量机方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes how neural networks and support vector machines can be used to detect errors in a large scale distributed system, specifically the ATLAS Trigger and Data AcQuisition (TDAQ) system. By collecting, analysing and preprocessing some of the data available in the system it is possible to recognize and/or predict error situations arising in the system. This can be done without detailed knowledge of the system, nor of the data available. Hence the presented methods could be used in similar system without significant changes. The TDAQ system, and in particular the main components related to this work, is described together with the test setup used. We simulate a number of error situations in the system and simultaneously gather both performance measures and error messages from the system. The data are then preprocessed and neural networks and support vector machines are applied to try to detect the error situations, achieving classification accuracy ranging from 88% to 100% for the neural networks and 90.8% to a 100% for the support vector machines approach.
机译:本文介绍了如何使用神经网络和支持向量机来检测大型分布式系统(特别是ATLAS触发和数据采集(TDAQ)系统)中的错误。通过收集,分析和预处理系统中的某些可用数据,可以识别和/或预测系统中出现的错误情况。无需系统的详细知识或可用数据即可完成此操作。因此,所提出的方法可以在没有明显变化的情况下用于相似的系统中。与使用的测试设置一起描述了TDAQ系统,尤其是与此工作相关的主要组件。我们模拟系统中的许多错误情况,同时从系统中收集性能指标和错误消息。然后对数据进行预处理,并使用神经网络和支持向量机尝试检测错误情况,对于神经网络,分类精度达到88%至100%,对于支持向量机方法则达到90.8%至100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号