首页> 外文会议>Computational intelligence and its applications >A New Hybrid Genetic Algorithm to Deal with the Flow Shop Scheduling Problem for Makespan Minimization
【24h】

A New Hybrid Genetic Algorithm to Deal with the Flow Shop Scheduling Problem for Makespan Minimization

机译:一种新的混合遗传算法,用于最小化制造周期的流水车间调度问题

获取原文
获取原文并翻译 | 示例

摘要

In the last years, many hybrid metaheuristics and heuristics combine one or more algorithmic ideas from different metaheuristics or even other techniques. This paper addresses the hybridization of a primitive ant colony algorithm inspired from the Pachycondyla apicalis behavior to search prey with the Genetic Algorithm to find near optimal solutions to solve the Flow Shop Scheduling Problem with makespan minimization. The developed algorithm is applied on different flow shop examples with diverse number of jobs. A sensitivity analysis was performed to define a good parameter choice for both the hybrid metaheuristic and the classical Genetic Algorithm. Computational results are given and show that the developed metaheuristic yields to a good quality solutions.
机译:近年来,许多混合的元启发式方法和启发式方法结合了来自不同元启发式方法甚至其他技术的一个或多个算法思想。本文探讨了一种原始蚁群算法的杂交方法,该算法是从拟南芥的行为中得到启发,用遗传算法搜索猎物,以找到接近最优的解决方案,以最小化制造期来解决流水车间调度问题。所开发的算法应用于具有不同工作数量的不同流水车间示例。进行了敏感性分析,为混合元启发式算法和经典遗传算法定义了良好的参数选择。给出了计算结果,并表明所开发的元启发式方法可产生高质量的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号