首页> 外文期刊>Foundations of computing and decision sciences >A Genetic algorithm to minimize the makespan in the k-stage hybrid flow shop scheduling problem
【24h】

A Genetic algorithm to minimize the makespan in the k-stage hybrid flow shop scheduling problem

机译:最小化k级混合流水车间调度问题中制造期的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the k-stage hybrid flow shop scheduling problem where the parallel machines are identical. Our study aims to provide a good approximate solution to this specific problem with the makespan (C_(max)) minimization as the objective function. Considering the success of the Genetic Algorithms (GA) developed for scheduling problems, we apply this metaheuristic to deal with this problem. We develop a GA with a new crossover operator. Indeed, it is a combination of two other crossover operator proposed in the literature. The design of our GA is different compared to the classical structure of the genetic algorithm especially in the encoding of solutions. For the calibration of our metaheuristic parameters, we conduct several experimental designs. Our algorithm is tested on a well known benchmark in the literature. The numerical results show that the proposed genetic algorithm is an efficient approach for solving the k-stage hybrid flow shop problem. Furthermore, this computational study shows that our GA, with the proposed crossover operator gives better results than the two other crossover operators.
机译:在本文中,我们考虑并行机器相同的k级混合流水车间调度问题。我们的研究旨在以最小化制造跨度(C_(max))为目标函数,为该特定问题提供一个良好的近似解决方案。考虑到针对调度问题开发的遗传算法(GA)的成功,我们应用这种元启发式方法来解决此问题。我们与新的交叉算子一起开发了GA。实际上,它是文献中提出的另外两个交叉算子的组合。与遗传算法的经典结构相比,我们的遗传算法的设计有所不同,尤其是在解决方案的编码方面。为了校准我们的元启发式参数,我们进行了一些实验设计。我们的算法在文献中的著名基准上进行了测试。数值结果表明,所提出的遗传算法是解决k阶混合流水车间问题的有效方法。此外,此计算研究表明,与提出的交叉算子相比,我们的遗传算法给出的结果要好于其他两个交叉算子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号