首页> 外文会议>Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2012 IEEE Symposium on >Using structural domains to predict obligate and non-obligate protein-protein interactions
【24h】

Using structural domains to predict obligate and non-obligate protein-protein interactions

机译:使用结构域预测专一性和非专一性蛋白-蛋白相互作用

获取原文
获取原文并翻译 | 示例

摘要

The identification and prediction of particular types of protein-protein interactions (PPIs) based on knowledge of their interacting domains is a problem that has drawn the attention of researchers in the past few years. We focus on the prediction and analysis of obligate and non-obligate complexes by using structural domains from the CATH database. Our proposed prediction model uses desolvation energies of domain-domain interactions (DDIs) present in the interfaces of such complexes. The prediction is performed via linear dimensionality reduction (LDR) and support vector machines (SVMs). Our results on two well-known datasets show that DDI features of the first three levels of CATH, especially level 2, are more powerful and discriminative than features of other levels in predicting these types of complexes. Furthermore, a detailed analysis shows that different DDIs are present in obligate and non-obligate complexes, and that homo-DDIs are more likely to be present in obligate interactions.
机译:基于其相互作用域的知识来识别和预测特定类型的蛋白质-蛋白质相互作用(PPI)的问题已引起了过去几年研究人员的关注。我们通过使用CATH数据库中的结构域,专注于专性和非专性复合物的预测和分析。我们提出的预测模型使用了此类复合物的界面中存在的域-域相互作用(DDI)的去溶剂化能。预测是通过线性降维(LDR)和支持向量机(SVM)执行的。我们在两个著名的数据集上的结果表明,在预测这些类型的复合物方面,CATH的前三个级别(尤其是级别2)的DDI功能比其他级别的功能更强大和更具判别力。此外,详细的分析显示专性和非专性复合物中存在不同的DDI,同质DDI更有可能存在于专性相互作用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号