首页> 外文会议>Complex, Intelligent and Software Intensive Systems (CISIS), 2012 Sixth International Conference on >Structure Identification for Complex System and Inference Interpretable Rules
【24h】

Structure Identification for Complex System and Inference Interpretable Rules

机译:复杂系统的结构识别和推理规则

获取原文
获取原文并翻译 | 示例

摘要

model of Complex and large systems which are usually characterized by the difficulty of formalizing and the lack of expertise are built from data representing instances of the system. The drawback of these structure selection methods is that they pay particular attention to the numerical accuracy of the resulting model and little attention to the qualitative and semantic aspect the use of a large number of input variables which leads to the introduction of redundant elements hence poor transparency and excessive complexity of the model is obtained. To ovoid these problems, a particular interest should be given for selecting relevant input variables that can provide a reasonable compromise between the quality of approximation, the complexity and the transparency of the model. The proposed approach for structure selection assumes constraints on the number of variables to be selected in the initial combination to describe the model. Relevant inputs are found from input-output data and variables with the highest correlation coefficient with the output variable are selected in the initial combination.
机译:复杂和大型系统的模型通常以形式化困难和专业知识不足为特征,这些模型是通过代表系统实例的数据构建的。这些结构选择方法的缺点是,它们特别注意结果模型的数值准确性,而很少关注定性和语义方面,使用大量输入变量会导致引入冗余元素,因此透明度较差从而导致模型过于复杂。为了避免这些问题,应该特别注意选择可以在近似质量,模型的复杂性和透明性之间做出合理折衷的相关输入变量。所提出的结构选择方法假设在初始组合中要描述模型的变量数量受到限制。从输入输出数据中找到相关输入,并在初始组合中选择与输出变量具有最高相关系数的变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号