首页> 外文会议>Communication Systems and Network Technologies (CSNT), 2012 International Conference on >Input Vector Comparison for Hourly Load Forecast of Small Load Area Using Artificial Neural Network
【24h】

Input Vector Comparison for Hourly Load Forecast of Small Load Area Using Artificial Neural Network

机译:人工神经网络的小负荷区域小时负荷预测的输入矢量比较

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an hourly load forecast of small load area using Artificial Neural Network (ANN). For this case-study duration of February-2010 to Januray-2011 is considered. In this study ANN is trained and tested for by providing two different input vectors. In this paper the input vector design and the data is mainly focused. Also, suitable ANN topology is also discussed. Further the training and testing process for ANNs of these months are explained. Back-propagation algorithm is employed in this process. Finally by comparing network performances for these two input vectors for each of the considered month, optimum vector is selected.
机译:本文使用人工神经网络(ANN)提出了小负荷区域的每小时负荷预测。对于此案例研究,持续时间为2010年2月至2011年Januray。在本研究中,通过提供两个不同的输入向量对ANN进行训练和测试。本文主要研究输入向量的设计和数据。此外,还讨论了合适的ANN拓扑。进一步说明了这些月的人工神经网络的培训和测试过程。在这个过程中采用了反向传播算法。最后,通过比较每个考虑月份中这两个输入向量的网络性能,选择最佳向量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号