首页> 外文会议>Combinatorial optimization and applications >A Randomized Algorithm for Weighted Approximation of Points by a Step Function
【24h】

A Randomized Algorithm for Weighted Approximation of Points by a Step Function

机译:用步函数加权逼近点的随机算法

获取原文
获取原文并翻译 | 示例

摘要

The problem considered in this paper is: given an integer k > 0 and a set P of n points in the plane each with a corresponding non-negative weight, find a step function f with k steps that minimize the maximum weighted vertical distance between f and all the points in P. We present a randomized algorithm to solve the problem in O(n log n) expected running time. The bound is obviously optimal for the unsorted input. The previously best known algorithm runs in O(n log~2 n) worst-case time. Another merit of the algorithm is its simplicity. The algorithm is just a randomized implementation of Frederickson and Johnson's matrix searching technique, and it only exploits a simple data structure.
机译:本文考虑的问题是:给定整数k> 0且平面中n个点的集合P各自具有相应的非负权重,请找到一个k个步长的步长函数f,该步长最小化f之间的最大加权垂直距离以及P中的所有要点。我们提出了一种随机算法来解决O(n log n)预期运行时间中的问题。对于未排序的输入,界限显然是最佳的。先前最知名的算法在O(n log〜2 n)最坏情况下运行。该算法的另一个优点是它的简单性。该算法只是Frederickson和Johnson矩阵搜索技术的随机实现,它仅利用简单的数据结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号