首页> 外文会议>Color imaging XVI: Displaying, processing, hardcopy, and applications >Estimation of Low Dynamic Range Images from Single Bayer Image using Exposure Look-up Table for High Dynamic Range image
【24h】

Estimation of Low Dynamic Range Images from Single Bayer Image using Exposure Look-up Table for High Dynamic Range image

机译:使用高动态范围图像的曝光查找表从单个Bayer图像估计低动态范围图像

获取原文
获取原文并翻译 | 示例

摘要

High dynamic range(HDR) imaging is a technique to represent the wider range of luminance from the lightest and darkest area of an image than normal digital imaging techniques. These techniques merge multiple images, called as LDR(low dynamic range) or SDR(standard dynamic range) images which have proper luminance with different exposure steps, to cover the entire dynamic range of real scenes. In the initial techniques, a series of acquisition process for LDR images according to exposure steps are required. However, several acquisition process of LDR images induce ghost artifact for HDR images due to moving objects. Recent researches have tried to reduce the number of LDR images with optimal exposure steps to eliminate the ghost artifacts. Nevertheless, they still require more than three times of acquisition processes, resulting ghosting artifacts. In this paper, we propose an HDR imaging from a single Bayer image with arbitrary exposures without additional acquisition processes. This method first generates new LDR images which are corresponding to each average luminance from user choices, based on Exposure LUTs(look-up tables). Since the LUTs contains relationship between uniform-gray patches and their average luminances according to whole exposure steps in a camera, new exposure steps for any average luminance can be easily estimated by applying average luminance of camera-output image and corresponding exposure step to LUTs. Then, objective LDR images are generated with new exposure steps from the current input image. Additionally, we compensate the color generation of saturated area by considering different sensitivity of each RGB channel from neighbor pixels in the Bayer image. Resulting HDR images are then merged by general method using captured images and estimated images for comparison. Observer's preference test shows that HDR images from the proposed method provides similar appearance with the result images using captured images.
机译:高动态范围(HDR)成像是一种比普通数字成像技术更能代表图像最亮和最暗区域的亮度范围的技术。这些技术合并了多个图像,称为LDR(低动态范围)或SDR(标准动态范围)图像,它们具有不同曝光步骤的适当亮度,以覆盖真实场景的整个动态范围。在初始技术中,需要根据曝光步骤进行一系列LDR图像的采集过程。但是,由于运动对象,LDR图像的几种获取过程会引起HDR图像的重影伪影。最近的研究试图通过最佳曝光步骤来减少LDR图像的数量,以消除重影伪影。尽管如此,它们仍然需要超过三倍的采集过程,从而导致出现重影伪影。在本文中,我们提出了从单个Bayer图像进行任意曝光而无需其他采集过程的HDR成像。此方法首先根据“曝光LUT”(查找表)生成与用户选择的每个平均亮度相对应的新LDR图像。由于根据照相机中的整个曝光步骤,LUT包含均匀灰色斑块与其平均亮度之间的关系,因此,通过将照相机输出图像的平均亮度和相应的曝光步骤应用于LUT,可以轻松地估计出任何平均亮度的新曝光步骤。然后,从当前输入图像以新的曝光步骤生成客观LDR图像。此外,我们通过考虑每个RGB通道与拜耳图像中相邻像素的不同灵敏度来补偿饱和区域的颜色生成。然后使用捕获的图像和估计的图像通过常规方法合并生成的HDR图像以进行比较。观察者的偏好测试表明,所提出方法的HDR图像与使用捕获图像的结果图像具有相似的外观。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号