首页> 外文会议>Coding theory and applications >Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound
【24h】

Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound

机译:等维码大小和改进的下界的渐近界

获取原文
获取原文并翻译 | 示例

摘要

We study asymptotic lower and upper bounds for the sizes of constant dimension codes with respect to the subspace or injection distance, which is used in random linear network coding. In this context we review known upper bounds and show relations between them. A slightly improved version of the so-called linkage construction is presented which is e.g. used to construct constant dimension codes with subspace distance d = 4, dimension k = 3 of the codewords for all field sizes q, and sufficiently large dimensions v of the ambient space. It exceeds the MRD bound, for codes containing a lifted MRD code, by Etzion and Silberstein.
机译:我们研究了恒定维码相对于子空间或注入距离的大小的渐近下界和上限,这用于随机线性网络编码。在这种情况下,我们回顾了已知的上限并显示了它们之间的关系。提出了所谓的连杆构造的稍微改进的版本,例如。用于构造常数维代码,其中子域距离d = 4,对于所有字段大小q,码字的维k = 3,并且环境空间的维足够大。对于包含提升的MRD代码的代码,Etzion和Silberstein超出了MRD范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号