首页> 外文会议>Chinese Spoken Language Processing; Lecture Notes in Artificial Intelligence; 4274 >Prosodic Words Prediction from Lexicon Words with CRF and TBL Joint Method
【24h】

Prosodic Words Prediction from Lexicon Words with CRF and TBL Joint Method

机译:基于CRF和TBL联合方法的词典词韵律词预测

获取原文
获取原文并翻译 | 示例

摘要

Predicting prosodic words boundaries will directly influence the naturalness of synthetic speech, because prosodic word is at the lowest level of prosody hierarchy. In this paper, a Chinese prosodic phrasing method based on CRF and TBL model is proposed. First a CRF model is trained to predict the prosodic words boundaries from lexicon words. After that we apply a TBL based error driven learning approach to refine the results. The experiments shows that this joint method performs much better than HMM.
机译:预测韵律词的边界将直接影响合成语音的自然性,因为韵律词处于韵律层次的最低级别。提出了一种基于CRF和TBL模型的汉语韵律表述方法。首先,训练CRF模型以从词典词中预测韵律词的边界。之后,我们应用基于TBL的错误驱动学习方法来完善结果。实验表明,这种联合方法的性能要比HMM好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号