首页> 外文会议>Chinese Spoken Language Processing; Lecture Notes in Artificial Intelligence; 4274 >On Using Entropy Information to Improve Posterior Probability-Based Confidence Measures
【24h】

On Using Entropy Information to Improve Posterior Probability-Based Confidence Measures

机译:利用熵信息改进基于后验概率的置信度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel approach that reduces the confidence error rate of traditional posterior probability-based confidence measures in large vocabulary continuous speech recognition systems. The method enhances the discriminability of confidence measures by applying entropy information to the posterior probability-based confidence measures of word hypotheses. The experiments conducted on the Chinese Mandarin broadcast news database MATBN show that entropy-based confidence measures outperform traditional posterior probability-based confidence measures. The relative reductions in the confidence error rate are 14.11% and 9.17% for experiments conducted on field reporter speech and interviewee speech, respectively.
机译:在本文中,我们提出了一种新颖的方法,可以降低大型词汇连续语音识别系统中传统的基于后验概率的置信度的置信错误率。该方法通过将熵信息应用于单词假设的基于后验概率的置信度来增强置信度的可分辨性。在中文普通话广播新闻数据库MATBN上进行的实验表明,基于熵的置信度优于传统的基于后验概率的置信度。对于现场记者讲话和受访者讲话进行的实验,置信错误率的相对降低分别为14.11%和9.17%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号