首页> 外文会议>China Conference on Information Retrieval >LTRRS: A Learning to Rank Based Algorithm for Resource Selection in Distributed Information Retrieval
【24h】

LTRRS: A Learning to Rank Based Algorithm for Resource Selection in Distributed Information Retrieval

机译:LTRRS:一种基于排名的学习算法,用于分布式信息检索中的资源选择

获取原文

摘要

Resource selection is a key task in distributed information retrieval. There are many factors that affect the performance of resource selection. Learning to rank methods can effectively combine features and are widely used for document ranking in web search. But few of them are explored for resource selection. In this paper, we propose a resource selection algorithm based on learning to rank called LTRRS. By analyzing the factors affecting the eflfec-tiveness of resource selection, we extract multi-scale features including term matching features, topical relevance features and central sample index (CSI) based features. By training LambdaMART learning to rank model, we directly optimize NDCG metric of resource ranking list in LTRRS. Experiments on the Sogou-QCL dataset show that LTRRS algorithm can significantly outperform the baseline methods in NDCG and precision metrics.
机译:资源选择是分布式信息检索中的关键任务。有许多因素会影响资源选择的性能。学习排名方法可以有效地组合功能,并广泛用于Web搜索中的文档排名。但是,其中很少有资源可供选择。在本文中,我们提出了一种基于学习排名的资源选择算法LTRRS。通过分析影响资源选择效率的因素,我们提取了多尺度特征,包括术语匹配特征,主题相关特征和基于中心样本索引(CSI)的特征。通过训练LambdaMART学习排序模型,我们直接优化LTRRS中资源排序列表的NDCG度量。在Sogou-QCL数据集上进行的实验表明,LTRRS算法在NDCG和精度指标方面可以明显优于基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号