首页> 外文会议>Conference on Visual Information Processing >Adaptive Methods of Two-Scale Edge Detection in Post-Enhancement Visual Pattern Processing
【24h】

Adaptive Methods of Two-Scale Edge Detection in Post-Enhancement Visual Pattern Processing

机译:增强后视觉图案处理中两尺度边缘检测的自适应方法

获取原文

摘要

Adaptive methods are defined and experimentally studied for a two-scale edge detection process that mimics human visual perception of edges and is inspired by the parvo-cellular (P) and magno-cellular (M) physiological subsystems of natural vision. This two-channel processing consists of a high spatial acuity/coarse contrast channel (P) and a coarse acuity/fine contrast (M) channel. We perform edge detection after a very strong non-linear image enhancement that uses smart Retinex image processing. Two conditions that arise from this enhancement demand adaptiveness in edge detection. These conditions are the presence of random noise further exacerbated by the enhancement process, and the equally random occurrence of dense textural visual information. We examine how to best deal with both phenomena with an automatic adaptive computation that treats both high noise and dense textures as too much information, and gracefully shifts from a small-scale to medium-scale edge pattern priorities. This shift is accomplished by using different edge-enhancement schemes that correspond with the (P) and (M) channels of the human visual system. We also examine the case of adapting to a third image condition, namely too little visual information, and automatically adjust edge detection sensitivities when sparse feature information is encountered. When this methodology is applied to a sequence of images of the same scene but with varying exposures and lighting conditions, this edge-detection process produces pattern constancy that is very useful for several imaging applications that rely on image classification in variable imaging conditions.
机译:定义了一种自适应方法,并通过实验研究了一种两尺度的边缘检测过程,该过程模仿了人类对边缘的视觉感知,并受到自然视觉的细小细胞(P)和大细胞(M)生理子系统的启发。该两通道处理包括一个高空间敏锐度/粗对比度通道(P)和一个粗糙敏锐度/精细对比度(M)通道。我们在使用智能Retinex图像处理的非常强大的非线性图像增强之后执行边缘检测。由这种增强引起的两个条件要求在边缘检测中具有自适应性。这些条件是增强过程进一步加剧了随机噪声的存在,以及密集纹理视觉信息的均等随机出现。我们研究了如何通过自动自适应计算来最好地处理这两种现象,该算法将高噪声和密集纹理都视为过多的信息,并从小规模边缘模式优先转换为中等规模边缘模式。通过使用与人类视觉系统的(P)和(M)通道相对应的不同边缘增强方案来完成此移动。我们还研究了适应第三种图像条件(即视觉信息太少)的情况,并在遇到稀疏特征信息时自动调整边缘检测的灵敏度。当此方法应用于具有不同曝光和光照条件的同一场景的一系列图像时,此边缘检测过程将产生图案恒定性,这对于依赖于可变成像条件下图像分类的几种成像应用非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号